
Introduction to Quantum Computation Sevag Gharibian
Summer 2020, Paderborn University

Lecture 10: Shor’s quantum factoring algorithm

“Euclid taught me that without assumptions there is no proof. Therefore, in any argument,
examine the assumptions.”
— Eric Temple Bell.

Contents

1 Introduction 1

2 The integer factorization problem 1

3 The factoring algorithm 3
3.1 Reducing FACTOR to order-finding . 3
3.2 Sampling via QPE . 6
3.3 Postprocessing via continued fractions . 9

4 Application: Breaking RSA 10

1 Introduction

In the previous lecture, we introduced the Quantum Fourier Transform (QFT), and applied it to the Quantum
Phase Estimation (QPE) problem. In this lecture, we show how to use QPE to derive a crown jewel of
quantum computation — the quantum factoring algorithm. This algorithm, developed by Peter Shor in
1994, forced the classical computer science community to re-evaluate one of its core assumptions. Namely,
in 1978, Rivest, Shamir, and Adleman published the public-key cryptosystem known as RSA, which to this
day remains widely used in practice. And while the field had grown comfortable assuming RSA is secure,
its Achilles heel was hiding in plain sight — the abstract of the original RSA paper itself reads:

“The security of the system rests in part on the difficulty of factoring the published divisor, n”.

Indeed, the standard assumption leading into the early 1990’s was that factoring is “hard”. And this is
precisely where Peter Shor made his mark — he showed that a polynomial-time quantum computer could
factor a composite integer N into its prime factors, thus breaking RSA.

At a high level, the factoring algorithm proceeds as follows: First, the problem of integer factorization
is reduced to the problem of order finding1. Then, the QPE algorithm is used to sample from a certain
desired distribution. Finally, these samples are postprocessed using a classical algorithm known as continued
fractions to solve the order finding problem. Before getting into these details, however, let us begin by
formally defining the factoring problem and understanding its context.

2 The integer factorization problem

Recall that the Fundamental Theorem of Arithmetic states that any positive integer N has a prime factor-
ization, i.e.

N = pk11 p
k2
2 · · · pkmm , (1)

1For clarity, this reduction was known prior to Shor’s algorithm, due to the 1976 work of Miller [Mil76].

1

for distinct primes pi and positive integers ki, and moreover this decomposition is unique. Thus, intuitively
the integer factorization problem asks one to, given N , output the prime factors {p1, . . . , pm}.

Exercise 1. Consider the following brute force algorithm for finding a factor pi: Iteratively try to divide
N by each of the numbers in sequence (2, 3, 4, . . . , b

√
Nc), and output the first divisor found. Clearly, this

algorithm requires O(
√
N) field operations over R. Why is this not a polynomial-time factoring algorithm?

(Hint: What is the number of bits required to represent the input, N? Is an O(
√
N)-time algorithm

polynomial with respect to this number of bits?)

Exercise 2. Given the prime factors {p1, . . . , pm}, show how to also compute the multiplicities {k1, . . . , km}
using polylog(N) field operations. Hint: Prove first that there are at most polylog(N) primes (including
multiplicities) in the prime factorization of N .

A formal definition. Although the intuitive definition of the factoring problem is clear, recall that for-
mally the complexity classes P and NP are sets of decision problems, meaning roughly that each possible
input to the problem is either a YES or NO instance. Thus, we formally define factoring as follows.

Definition 3 (FACTOR).

� Input: A positive integer N > 1, and threshold K ∈ Z+.

� Output: Does N have a prime factor smaller than K?

Exercise 4. Show how a subroutine for solving the decision problem FACTOR can be bootstrapped to
efficiently compute the smallest non-trivial prime factor of N .

Complexity theoretic considerations. Interestingly, while FACTOR is not known to be in P, its close
cousin, the primality testing problem, is in P. The latter is defined: Given N ∈ Z+, is N composite (i.e.
not prime)? While this does not, as far as is known, allow us to also solve FACTOR, it does imply that
FACTOR ∈ NP ∩ co-NP.

Exercise 5. Why is FACTOR trivially in NP?

Exercise 6. Why is FACTOR in co-NP? (Hint: Use the Fundamental Theorem of Arithmetic.)

Exercise 7. Prove that if a language L ∈ NP ∩ co-NP is NP-complete, then NP = co-NP.

Combining the exercises above, we conclude that if FACTOR is NP-complete, then NP = co-NP. The latter
equality, however, is known to collapse the Polynomial-Time Hierarchy (PH) to its first level, a consequence
widely believed almost as unlikely as P = NP. Thus, FACTOR is strongly expected not to be NP-complete.

NP-intermediate problems. While at first glance this may seem an unsatisfying state of affairs, there is a
silver lining: FACTOR is one of the few known natural candidate “NP-intermediate” problems. Here, an
NP-intermediate problem is a language in NP which is neither in P nor NP-complete. Of course, noone can
prove that FACTOR is NP-intermediate. However, what we can prove (or more accurately, what Richard
Ladner proved in 1975) is that, assuming P 6= NP, NP-intermediate problems do exist.

Extended Church-Turing thesis. The backbone on which essentially all of theoretical computer science rests
is the Church-Turing Thesis. This thesis posits that a Turing machine (TM) can simulate any other model of
computing. (Note this is a thesis, not a proven theorem.) In other words, TMs tell us everything we need to
know about computing. Except that the Church-Turing thesis says nothing about the efficiency with which

2

a TM can simulate other models. For this, we rely on the (less commonly accepted) Extended Church-Turing
Thesis, which states that TMs can efficiently simulate any physically realizable model of computing.

The added constraints of “efficiency” and “physical realizability” of the Extended Church-Turing Thesis
imply that, thanks to the quantum factoring algorithm, we have arrived at an exciting crossroads, at which
one of the following three statements must be false:

1. The Extended Church-Turing Thesis is true.

2. FACTOR cannot be solved efficiently on a classical computer.

3. Large-scale universal quantum computers can be built.

Exercise 8. Convince yourself that the truth of any two of these statements implies the falsehood of the
remaining statement. Where do the keywords “efficiently” and “physically realizable” from the Extended
Church-Turing Thesis fit into your arguments?

3 The factoring algorithm

Having formally defined FACTOR, we discuss the quantum factoring algorithm, which consists of three
high-level steps: Reducing FACTOR to order-finding (Section 3.1), and solving order-finding by combining
QPE (Section 3.2) and continued fractions (Section 3.3).

3.1 Reducing FACTOR to order-finding

We begin by formally defining order-finding.

Definition 9 (Order-finding (ORDER)).

� Input: Positive integers N and 1 ≤ x < N , with x co-prime to N .

� Output: The least positive integer r such that xr ≡ 1 mod N .

Exercise 10. As stated, ORDER is not a decision problem. How can it be converted to one?

The reduction. We now show how FACTOR reduces to ORDER. We begin with a simple observation,
given as the following exercise. Define gcd(x, y) as the greatest common divisor of x, y ∈ Z. Recall that x
and y are co-prime if gcd(x, y) = 1.

Exercise 11. Let x ∈ Z be a non-trivial solution to equation (x−1)(x+ 1) ≡ 0 mod N , where non-trivial
means x 6≡ 1 mod N and x 6≡ −1 mod N . Show that either gcd(x− 1, N) or gcd(x+ 1, N) is a non-trivial
factor of N . (Hint: Observe that, by assumption, N cannot divide either x− 1 nor x+ 1.)

The exercise above gives us a route for factoring a given N ∈ Z+ — namely, we “just” need to find a non-
trivial x satisfying x2 ≡ 1 mod N . The only question is — where do get our hands on such an x? To solve
this difficult-sounding problem, we resort to the most advanced of algorithmic techniques — simply pick an
x at random. More accurately, pick (uniformly at random) an integer x in set ZN := {0, 1, . . . , N − 1} which
is co-prime to N . It turns out that with high probability, the order of x, i.e. the smallest r such that xr ≡ 1
mod N , allows us to construct the solution to x2 ≡ 1 mod N we are looking for. Before formally proving
that random sampling of x works, let us see why the order r of x helps.

Exercise 12. Let r be an even positive integer satisfying xr ≡ 1 mod N . Give a y satisfying y2 ≡ 1
mod N . (Hint: Note that r is even by assumption.)

3

Exercise 13. Does your y from the previous exercise necessarily allow you to extract a factor of N? (Hint:
Is it necessarily true that y will be a non-trivial solution to y2 ≡ 1 mod N?)

The last exercise above suggests that simply picking an x with even order r will not suffice — we will need
slightly more structure.

Finding a non-trivial solution to x2 ≡ 1 mod N . The proof that random sampling can lead to a non-trivial
solution for x2 ≡ 1 mod N requires three well-known facts, which we first state.

Fact 14 (Fermat’s Little Theorem (FLT)). For any prime p and integer a, ap ≡ a mod p. Moreover, if p
does not divide a, then ap−1 ≡ 1 mod p.

Fact 15 (Chinese Remainder Theorem (CRT)). Let {m1, . . . ,mn} be a set of integers larger than 1, each
pair of which is co-prime. Then, for any integers {a1, . . . , an}, the linear system of equations

x ≡ a1 mod m1 (2)

x ≡ a2 mod m2 (3)

... (4)

x ≡ an mod mn (5)

has a solution x ∈ Z. Moreover, all solutions are equivalent modulo M = m1 · · ·mn, implying there is a
unique solution x ∈ {0, . . . ,M − 1}.

Fact 16 (Multiplicative group Zp is cyclic). Fix any positive prime p ∈ Z. Then, there exists a generator
g ∈ Zp, such that any non-zero element e ∈ Zp can be written gk ≡ e mod p for some k ∈ {1, . . . , p− 1}.

Exercise 17. Use Fermat’s Little Theorem to prove that there is a bijection between elements e and powers
k in Fact 16 above. Conclude that picking e uniformly at random is equivalent to picking k uniformly at
random. (For this exercise, do not assume a priori that k ∈ {1, . . . , p− 1} as stated in Fact 16.)

Exercise 18. Let r be the order of x modulo N , and consider r′ > r satisfying xr
′ ≡ 1 mod N . Prove

that r divides r′.

The main theorem of this section is the following. Its proof requires Lemma 25, which is stated and
proven subsequently.

Theorem 19. Let N be an odd, composite natural number. Define Z∗N := {x ∈ ZN | x is co-prime to N}.
Choose x ∈ Z∗N uniformly at random. Then, with probability at least 1/2, the order r of x is even and
satisfies

xr/2 6≡ −1 mod N. (6)

Exercise 20. Why does Theorem 19 allow us to factor N with probability at least 1/2, assuming we have
an oracle for order-finding? In your answer, make sure you account for the fact that Theorem 19 does not
explicitly state that xr/2 6≡ 1 mod N .

Exercise 21. Is 0 ∈ Z∗N? What is Z∗p for prime p?

Proof of Theorem 19. We prove the claim for the special case relevant to RSA (Section 4), i.e. N = pq
for distinct primes p and q. The proof can be generalized to arbitrary N = pk11 · · · pkmm for distinct primes
p1, . . . , pm.

To begin, the only thing we know about N is its prime factorization N = pq, so let us start by rephrasing
what it means to “choose x ∈ Z∗N uniformly at random” in terms of “local” factors p and q.

4

Exercise 22. Show that choosing x ∈ Z∗N uniformly at random is equivalent to choosing (a, b) ∈ Spq uni-
formly at random, for set Spq :=

{
(a, b) | a ∈ Z∗p and b ∈ Z∗q

}
. (Hint: Use the Chinese Remainder Theorem

to demonstrate a bijection between Z∗N and Spq.)

Thus, assume we equivalently sample (a, b) uniformly at random from Spq. We now have to bound the
probability that r is even and xr/2 6∈ {±1} modulo N .

Focus: Largest powers of 2. Recall that xr ≡ 1 mod pq, x ≡ a mod p, and x ≡ b mod q. Defining ra
and rb as the orders of a modulo p and b modulo q, respectively, we thus have xra ≡ ara ≡ 1 mod p, and
xrb ≡ brb ≡ 1 mod q.

Exercise 23. Prove that ra and rb both divide r.

To bound the probability of our bad events (i.e. r is odd or xr/2 ∈ {±1} modulo N), it turns out the
right place to look is the exact power of 2 which appears in each of the prime decompositions of ra and rb,
respectively. Specifically, we proceed by showing two claims:

(A) Either bad event causes ra and rb to have precisely the same power of 2 in their prime factorizations.

(B) But since (a, b) is drawn uniformly at random from Spq, the odds that ra and rb have this same factor
of 2 is precisely 1/2.

Formally, define ta and tb as the exact powers of 2 which divide ra and rb, respectively (e.g. ra =
2tapk22 p

k3
3 · · · is the prime factorization of ra, with p2, p3, . . . being distinct primes larger than 2). Let us first

prove point (A). Consider the first bad event, r is odd. By Exercise 23, ra and rb divide r, and hence are
both odd. Thus, ta = tb = 0. The second bad event is when r is even but xr/2 ≡ −1 mod N . We know
from Exercise 23 that ra and rb both divide r. Thus, ta and tb are at most the power of 2 in the prime
decomposition of r. We show matching lower bounds. Since xr/2 ≡ −1 mod N , we have xr/2 ≡ −1 mod p
and xr/2 ≡ −1 mod q. But by definition xra ≡ ara ≡ 1 mod p and xrb ≡ brb ≡ 1 mod q, so ra and rb
cannot divide r/2. (Otherwise, for example, xr/2 ≡ 1 mod p.) Since ra and rb divide r but not r/2, we
obtain our desired lower bound — ta and tb must be at least the power of 2 in the prime decomposition of
r. This concludes the proof of point (A). Point (B) now follows from Lemma 25, as the following exercise
shows.

Exercise 24. Confirm that Point (B) follows from Lemma 25.

Lemma 25. Fix an odd prime p, and choose a ∈ Z∗p uniformly at random. Let ra be the order of a. Then,
with probability 1/2, the largest power of 2 which divides p− 1 also divides ra.

Proof. Let t be the largest power of 2 which divides p− 1, i.e. 2t divides p− 1.

Exercise 26. Why can we assume t > 0?

The proof strategy exploits Exercise 17, which recall states that choosing a ∈ Z∗p uniformly at random is

equivalent to choosing k ∈ {1, . . . , p− 1} uniformly at random (where gk ≡ a mod p for fixed generator g
of Zp). In particular, since Z∗p has even size, this means that k is odd with probability 1/2. The key point
is that, as we show next, k is odd if and only if 2t divides ra, yielding the desired claim regarding ra.

� (Case 1: k odd) We claim 2t divides ra. Since

gkra ≡ ara ≡ 1 ≡ gp−1 mod p,

where the last equivalence follows from FLT, we conclude p − 1 divides kra. But p − 1 is even and k
is odd, implying the factor 2t which divides p− 1 does not divide k, but rather ra, as claimed.

5

|0n〉 H⊗n • QFT †2n

|ψ〉 Uk

Figure 1: A high-level schematic of the QPE algorithm.

� (Case 2: k even) We claim 2t does not divide ra. To show this, note

gkra ≡ ara ≡ 1 ≡ gp−1 ≡ gk
p−1
2 mod p,

where the third equivalence uses FLT, and the last that k is even. We conclude that ra divides (p−1)/2.
But p− 1 has factor 2t, meaning (p− 1)/2 has factor 2t−1, and thus the largest power of 2 appearing
in the prime factorization of ra is also at most 2t−1. Thus, 2t does not divide ra, as claimed.

3.2 Sampling via QPE

Having reduced FACTOR to ORDER, we are now tasked with solving the latter: Given x,N ∈ Z+ such
that x is co-prime to N , what is the order r of x? It turns out previous lectures have already given us all
the toys needed to play this game. Indeed, we now detail the only quantum component of Shor’s algorithm,
consisting of an application of QPE (a high-level view of QPE is given in Figure 1 to jog your memory). This
use of QPE requires overcoming three challenges: (1) Which unitary U do we apply QPE to? (2) Where do
we find an eigenvector |ψ〉 of U to plug into QPE? (3) What precision do we need to run QPE to, and can
we efficiently compute the corresponding controlled-Uk operation for this precision?

Challenge 1: The choice of U . Recalling that (x,N) is the input to ORDER, we shall run QPE on
unitary Ux defined via action

Ux|y〉 = |xy mod N〉. (7)

Exercise 27. Let V be a d× d complex matrix. Prove that V is unitary if and only if V maps any given
orthonormal basis B ⊆ Cd to an orthonormal basis B′ ⊆ Cd. Can you give an outer product representation
of V ?

Exercise 28. Using the previous exercise, prove that Ux is unitary. (Hint: Use the fact that for any x
co-prime to N , there exists an inverse x−1 ∈ Z∗N such that xx−1 ≡ 1 mod N .)

The claim now is that certain eigenvalues of Ux encode the order r of x. Let us “design” the corresponding
eigenvectors from scratch to build intuition. First, what do we know, and why did we choose Ux the way we
did? Well, we know xr ≡ 1 mod N , and the operation y 7→ xy mod N induced by U allows us to iteratively
produce the elements of the infinite sequence (1, x, x2, x3, . . . , xr−1, 1, x, . . .). It follows that a first guess at
an eigenvector of Ux is

|η〉 :=
1√
r

r−1∑
j=0

|xj mod N〉. (8)

Exercise 29. Show that Ux|η〉 = |η〉, i.e. |η〉 has eigenvalue 1.

Unfortunately, an eigenvalue of 1 is not very exciting. However, we are only a tweak away from what we
want. Recall the other setting in which we have a “cyclic” or “wraparound” property: The complex unit

6

circle. In particular, for principal rth root of unitary ωr := exp(2πi/r), we have ωrr = 1. Thus, let us try
injecting rth roots of unity as relative phases into |η〉 to obtain:

|φ〉 :=
1√
r

r−1∑
j=0

e2πij/r|xj mod N〉. (9)

Exercise 30. Show that Ux|φ〉 = e−2πi/r|φ〉, i.e. |φ〉 has eigenvalue e−2πi/r.

We conclude that running QPE with Ux on |φ〉 would yield an approximation to 1/r, from which we could
in principle recover r, as desired. There’s only one problem — how do we prepare |φ〉? Indeed, to prepare
|φ〉, it would seem we need to know r, which is precisely what we had originally set out to find!

Exercise 31. In Lecture 9, we assumed in the definition of QPE that the input phase θ ∈ [0, 1), whereas
above we have θ = −i/r. Show how a simple modification to the QPE algorithm allows us to nevertheless
extract i/r.

Challenge 2: How to prepare |φ〉. Unfortunately, it is not known how to construct |φ〉 directly. There
is, however, a slick way around this problem. Let us extend |φ〉 to an orthonormal basis B := {|φk〉} for
the Hilbert space H which Ux acts on, where we define |φ1〉 := |φ〉. Then, any unit vector |ψ〉 ∈ H may be

written |ψ〉 =
∑
k αk|φk〉 with

∑
k |αk|

2
= 1. Since QPE is unitary (omitting the final measurement), by

linearity we have

|0n〉|ψ〉 =
∑
k

αk|0n〉|φk〉
QPE7−−−→

∑
k

αk|θk〉|φk〉, (10)

where θk is an approximation to the phase corresponding to |φk〉.

Exercise 32. Suppose we measure the first register of the right side of Equation (10). With what proba-
bility do we obtain our desired outcome θ1 corresponding to |φ1〉?

The takeaway is that we need not prepare |φ1〉 exactly ; rather, it may be easier to prepare some |ψ〉 which
has non-zero amplitude α1 on |φ1〉. It turns out this is not only easy, but trivial. Indeed, there is a clever
choice of the first r basis vectors |φk〉 in B which satisfies

1√
r

r−1∑
k=0

|φk〉 = |1 mod N〉. (11)

(Note that |1 mod N〉 is indeed trivial to prepare.) So what are |φ2〉, . . . , |φr〉? In particular, how do
we systematically construct states orthonormal to |φ1〉? Observe that |φ1〉 is essentially a column from a
Vandermonde matrix, obtained by raising the principal rth root of unity ωr to increasing powers. Thus, we
know precisely how to generate r− 1 more vectors orthonormal to |φ1〉 — simply consider the Vandermonde
matrix whose kth (for k ∈ {0, . . . , r − 1}) row exponentiates ωkr to increasing powers (up to r− 1, inclusive).
Formally, define

|φk〉 :=
1√
r

r−1∑
j=0

e2πijk/r|xj mod N〉. (12)

Exercise 33. Prove that vectors {|φk〉}rk=1 are orthonormal.

Exercise 34. Prove that U |φk〉 = e−
2πik
r |φk〉.

7

Exercise 35. Show that defining |φk〉 as in Equation (12) yields Equation (11).

Plugging the exercise above into Equations (10) and (11), we have that if we run QPE on |1 mod N〉 and
measure the first register, with probability 1/r we get (an approximation to) phase k/r for some k ∈ [r− 1].
This is almost what we want, except for the pesky k variable in the numerator. So we must settle for
something less — the ability to sample uniformly at random from set S := {1/r, 2/r, . . . , (r − 1)/r}. Is this
enough to extract r? Incredibly, the answer is yes, and will be covered in Section 3.3.

Exercise 36. Consider the following naive algorithm for extracting r. Run QPE repeatedly t times to
collect t samples from S, for t some polynomial in the input size, logN . Let t∗ denote the smallest sample
drawn. Return 1/t∗ as the guess for r. Intuitively, how large might t have to be for this algorithm to extract
r with (say) constant probability?

Challenge 3: Precision and the controlled-Uk operation. Before discussing how sampling from S
allows us to extract r, we must address a key issue we have thus far swept under the rug: Can we even
efficiently run the QPE algorithm to the precision required for sampling from S, i.e. to represent k/r for
k ∈ [r − 1]? To analyze this, recall that the input size to FACTOR is the number of bits needed to encode
N , i.e. n := dlogNe+ 1 bits.

Exercise 37. Consider arbitrary k, r ∈ Z+ for k < r, which can both be expressed exactly using n bits.
How many bits are required to express the ratio k/r as a real number, i.e. as a sequence of bits 0.b1b2b3 . . . bm?
(Hint: Does k/r necessarily have a finite binary expansion, even if k and r have finite expansions?)

As the exercise above suggests, even if k and r have finite binary expansions, it is not necessarily true that
k/r has a finite expansion. Thus, a priori it is not clear what precision we should require from QPE. Naively,
one might “guess” that since kr requires at most 2n + 1 bits to represent, perhaps k/r can be sufficiently
well-approximated also using 2n+1 bits (at least close enough for us to recover k and r as integers). Indeed,
it turns out that 2n+ 1 bits of QPE precision will suffice for the continued fractions algorithm of Section 3.3
to extract k and r.

To obtain 2n + 1 bits of precision in QPE with probability at least 1 − ε for fixed ε > 0, however, we
require two things: Expanding the first register of Figure 1 to n′ = 2n + 1 + dlog(2 + 1

2ε)e qubits (which

is just a constant factor overhead), and the ability to raise U to power 2n
′ ∈ O(2n) in time poly(n) (this

smells like trouble). Stated differently, the latter requires us to compute xky mod N for k ∈ O(2n) in time
poly(n). As luck would have it, there is a well-known classical algorithm which accomplishes essentially this,
known as square-and-multiply.

The square-and-multiply algorithm. This algorithm allows us to compute ab mod M using polylog(b)
operations, which is exponentially faster than the brute force method of multiplying a by itself b times.

Basic idea. The basic idea is most easily seen when b is a power of 2, e.g. b = 2n. In this case, note that
(trivially) ab = (a2)b/2. In other words, we can cut the exponent in half simply by performing a single
squaring of a. So let us repeat this tradeoff, each time squaring the result of the previous square and cutting
the remaining exponent in half. How many times can we repeat this before it terminates? Precisely log b = n
times, hence yielding an exponential speedup over brute force, which would have required b operations.

General case. When b is not a power of 2, the principle is similar, but the recursive step requires two cases
instead of one:

ab =

{
(a2)

b
2 if b is even

a(a2)
b−1
2 if b is odd.

(13)

8

The square-and-multiply algorithm repeatedly applies this recursive step until b = 0, at which point it
terminates. Note that since we are working mod M , in order to prevent the expression being computed from
blowing up exponentially quickly, we may apply the mod operation after each application of the recursive
rule.

Exercise 38. Asymptotically, how many operations does the algorithm require in the general case?

3.3 Postprocessing via continued fractions

In Section 3.2, we used QPE to approximately sample from set S := {1/r, 2/r, . . . , (r − 1)/r}. More specif-
ically, defining n := dlogNe + 1, each time we ran the QPE subroutine, we obtained (with probability at
least 1− ε) the 2n+ 1 most significant bits of the binary expansion of some random element k/r of S. Given
access to such a sample x, it thus remains to extract a guess for r. To do so, we run the continued fractions
algorithm, for which we first overcome the following minor obstacle.

A minor obstacle. If we are to have any hope of extracting r given k/r, we must have k and r co-prime
(in other words, k/r is already in lowest terms). A priori, there is no way of guaranteeing this, since k is
drawn uniformly at random from {0, . . . , r − 1}. However, the uniform sampling is simultaneously the key to
the solution. Namely, given positive integer r, the number of positive integers less than r which are co-prime
to r has been studied since 1763, and goes by the name of the Euler totient function φ(r). The totient
function scales as φ(r) ∈ Ω(r/ log log r) for r > 2. Thus, a randomly chosen k in {0, . . . , r − 1} is co-prime
to r with probability scaling as 1/ log log r ≥ 1/ log logN . It follows that repeating the QPE sampling step
O(log logN) times (i.e. logarithmic in the encoding size of N) suffices to obtain k/r with k co-prime to r
with high probability. Assuming we have such a k/r, we can now apply continued fractions.

The continued fractions algorithm. In a nutshell, the continued fractions expansion is just another
representation for a given rational number a/b for a, b ∈ Z+. Specifically, given a/b, the algorithm outputs
a finite sequence of integers C := (c0, c2, . . . , cm), such that

a

b
= c0 +

1

c1 + 1
c2+

1

···+ 1
cm

. (14)

Why should this representation of a/b be useful? First, instead of viewing C as representing a single rational
number, note we may view it as encoding a list of m rational numbers, each defined via the continued
fraction subsequence (formally, kth convergent) Ck := (c0, . . . , ck). Recall now that what QPE gave us was
not a random sample k/r, but rather the first 2n + 1 bits of k/r, denoted x. Thus, x itself is rational, and
is “close” to k/r. Amazingly, the following theorem thus tells us that the continued fractions expansion of
x will yield a sequence of m convergents, one of which is precisely a/b.

Theorem 39. Let k, r ∈ Z+ and x ∈ Q+ satisfy∣∣∣∣kr − x
∣∣∣∣ ≤ 1

2r2
. (15)

Let C = (c0, . . . , cM) be the continued fractions expansion of x. Then, there exists a k ∈ {0, . . . ,M} such
that the kth convergent (c0, . . . , ck) represents k/r exactly.

Exercise 40. Show that since x is the 2n+ 1 most significant bits of k/r, Equation (15) indeed holds, and
thus we can apply Theorem 39.

This almost gives us what we want — instead of an approximation x to k/r, we now actually have k/r
exactly. There are three questions to be answered: (1) How large is M in Theorem 39? (2) How do we

9

compute the continued fractions expansion of x? (3) Given the convergent of x which yields k/r, how do
we extract r (recall we don’t know k)? For (1), it turns out since k and r are n-bit integers, one can choose
M ∈ O(n). The answers to the other two questions we give below.

Computing the continued fractions expansion. The algorithm essentially “implements” Equation (14)
in a “greedy” fashion. Let us demonstrate with an explicit example, the expansion of 23/9:

23

9

split−−−→ 2 +
5

9

invert−−−→ 2 +
1
9
5

split−−−→ 2 +
1

1 + 4
5

invert−−−→ 2 +
1

1 + 1
5
4

split−−−→ 2 +
1

1 + 1
1+ 1

4

.

As demonstrated above, the algorithm repeatly applies the split step (extract the integer component) and
invert step (flip the fractional component) until the final fraction is of form 1/z for some z ∈ Z.

Exercise 41. Give the continued fractions expansion for 31/11.

Exercise 42. Prove that the continued fractions expansion for any rational number is indeed finite.

Recovering r by “inverting” the continued fractions expansion. Let C = (c0, c1, . . . , cm) be the
continued fractions expansion of the 2n + 1-bit estimate x for k/r given by QPE. Since we assumed k and
r are co-prime, we are now in a position to extract r via the following theorem. Note we do not know a
priori which convergent of C correctly encodes k/r; but since m ∈ O(n), we can simply try all convergents
in polynomial time.

Theorem 43. Given any continued fractions expansion (or more generally, some kth convergent) Ck :=
(c0, c1, . . . , ck) where ci ∈ Z+ for all i ∈ 0, . . . , k, define ai and bi recursively as follows:

a0 = c0 a1 = 1 + c0c1 ai = ciai−1 + ai−2 for i ∈ {2, . . . , k}
b0 = 1 b1 = c1 bi = cibi−1 + bi−2 for i ∈ {2, . . . , k}.

Then, the expansion Ck is equivalent to rational number ak/bk, where ak and bk are co-prime.

Combining Theorems 39 and 43, we hence have that trying all m possible convergents in the expansion C
for x (which recall is a 2n+ 1-bit estimate of k/r) will eventually allow us to recover both k and r.

Exercise 44. Apply Theorem 43 to C = (1, 2, 3, 4). What are a3 and b3? Confirm that they are co-prime.

4 Application: Breaking RSA

Finally, let us briefly discuss how the quantum factoring algorithm allows us to efficiently break RSA.

The RSA cryptosystem. RSA, named after its founders Rivest-Shamir-Adleman, is a public key cryp-
tosystem still widely used today. Roughly, in a public key cryptosystem, Alice wishes to allow the public to
send her private messages. For this, she creates a pair of keys: One public key P , one private key S. The
public key P is distributed openly to the world; anyone can use P to encrypt a given message M , obtaining
ciphertext E(M) for transmission to Alice. Upon receipt of any such E(M), Alice uses her private key S,
which is only known to her, to decrypt E(M) and recover M .

What we thus need to specify for RSA are the public and private keys P and S, respectively, as well as
the encryption and decryption algorithms. These are given as follows.

� How Alice creates the keys:

1. Alice chooses two large prime integers p and q, and computes N = pq.

10

2. She randomly chooses small odd e ∈ Z co-prime to φ(N) := (p− 1)(q − 1).

3. She computes d satisfying ed ≡ 1 mod φ(N).

4. She publicly releases P = (e,N), and privately stores S = (d,N).

� How the public encrypts messages given P = (e,N). Suppose Bob wishes to encrypt string

M ∈ {0, 1}blogNc. Viewing M as the binary encoding of an integer, he computes ciphertext

E(M) := Me mod N. (16)

Note this can be done efficiently even for large e via the square-and-multiply algorithm.

Exercise 45. Why is the length of M assumed to be bounded by O(logN) above?

� How Alice decrypts ciphertext E(M). Given ciphertext E(M), Alice recovers M by computing

M = (E(M))d mod N. (17)

The proof of this equality is not difficult, but is omitted to avoid sidetracking the discussion.

� How factoring allows one to completely break RSA. Suppose adversary Eve can factor N
efficiently into primes p and q. Then, since e is public knowledge, she can recompute d such that ed ≡ 1
mod φ(N) (Step 3 of Alice’s creation protocol), giving her Alice’s private key S = (d,N). Thus, not
only can Eve decrypt any incoming ciphertext to Alice, but she in fact has complete knowledge of
Alice’s secret key.

In sum, what makes RSA classically “hard” to break is that given just N = pq, it is not clear how to compute
φ(N) = (p− 1)(q − 1). But given the factors p and q, recovering φ(N), and hence the private key d, is easy.

References

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300 – 317, 1976.

11

	Introduction
	The integer factorization problem
	The factoring algorithm
	Reducing FACTOR to order-finding
	Sampling via QPE
	Postprocessing via continued fractions

	Application: Breaking RSA

